
# Ограничители перенапряжений ОПН / ОПН-П-0,38 / 3,3 / 0,66 / 6-РВО / 10-РВО УХЛ1 Технические характеристики

Архангельск (8182)63-90-72 Астана (7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волоград (8472)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курок (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13

Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

### Ограничители перенапряжений ОПН-0,38 (ОПН-0,4); ОПН-П-0,38 (ОПН-П-0,4) УХЛ1

Ограничители ОПН-П-0,38 (ОПН-П-0,4) нелинейные с полимерной (пластмассовой) или фарфоровой ОПН-0,38 (ОПН-0,4) изоляцией предназначены для защиты от коммутационных и атмосферных перенапряжений изоляции электрооборудования подстанций и сетей на классы напряжения 0,38 кВ.



#### Ограничители перенапряжений

устанавливаются в сетях переменного тока частотой 50 Гц с глухо заземленной нейтралью и включаются параллельно защищаемому объекту.

ОПН-П-0,38 УХЛ1 могут устанавливаться в тех местах электроустановок, где ранее предусматривалось применение разрядников PBH-0,5.

### Условия эксплуатации ОПН-П-0,38 (ОПН-П-0,4) УХЛ1

ОПН-П-0,38 (ОПН-П-0,4) могут эксплуатироваться в условиях открытого воздуха или внутри помещений:

- при температуре окружающей среды: от минус 60 до плюс 50°С;
- высота установки над уровнем моря до 1000м;
- относительная влажность воздуха при температуре плюс 25°C до 100%;
- толщина корки льда до 20 мм;
- скорость ветра без гололеда не более 40 м/с.;
- скорость ветра при гололеде не более 15м/с.

### Конструкция и работа ограничителей перенапряжений

Конструктивно ограничители ОПН-П-0,38 выполнены в виде единичного нелинейного резистора сжатого пружиной, заключенных в полимерный (пластмассовый) корпус.

### Условное обозначение ОПН-П-0,38 УХЛ1

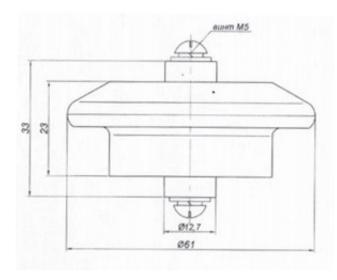
В структуре условного обозначения ОПН-П принято:

| 0    | - ограничитель;              |
|------|------------------------------|
| П    | - перенапряжения;            |
| Н    | - нелинейный;                |
| П    | - полимерная изоляция;       |
| 0,38 | - класс напряжения сети, кВ; |
| ухл  | - климатическое исполнение;  |
| 1    | - категория размещения;      |

# Технические характеристики ограничителей перенапряжений ОПН-П-0,38

| Параметр ограничителя                                                         | Единица<br>измерения | ОПН-<br>П-0,38<br>УХЛ1 |
|-------------------------------------------------------------------------------|----------------------|------------------------|
| Класс напряжения сети                                                         | кВ                   | 0,38                   |
| Наибольшее рабочее напряжение (длительно действ ующее)                        | кВ                   | 0,4                    |
| Номинальный разрядный ток                                                     | кА                   | 2,5                    |
| Остающееся напряжение при импульсном токе 8/20 мкс                            | кВ                   |                        |
| • с амплитудой тока 250 А                                                     |                      | 1,4                    |
| • с амплитудой тока 2500 А                                                    |                      | 1,6                    |
| • с амплитудой тока 5000 А                                                    |                      | 1,7                    |
| Длина пути утечки в нешней изоляции                                           | СМ                   | 8,0                    |
| Расчётный ток коммутационного перенапряжения на волне 30/60 мкс               | Α                    | 125                    |
| Остающееся напряжение при расчётном токе коммутационного перенапряжения       | кВ                   | 1,3                    |
| Двадцатикратная токовая пропускная способность токовая пропускная способность |                      |                        |
| <ul> <li>при прямоугольной волне длительностью 2000<br/>мкс</li> </ul>        | А                    | 125                    |
| • при волне импульсного тока 8/20 мкс                                         | кА                   | 3                      |
| Группа вибропрочности виброустойчивости по ГОСТ<br>17516.1-90                 |                      | M6                     |
| Допустимое натяжение проводов, не менее                                       | Н                    | 10                     |
| Допустимый крутящий момент на выводе                                          | Нм                   | 2,5                    |
| Macca                                                                         | КГ                   | 0,32                   |
| Срок службы                                                                   | лет                  | 25                     |

#### Возможные модификации:


- ОПН-П-0,38/125 УХЛ1
- ОПН-П-0,38/300 УХЛ1
- ОПН-0,38 УХЛ1
- ОПН-П1-0,38 УХЛ1
- ОПНп-0,38 УХЛ1, ОПНп-0,38 УХЛ2
- ОПН-П1-0,38 УХЛ1



### Ограничители перенапряжений ОПН-0,66 и ОПН-П-0,66 кВ

Ограничители ОПН-П-0,66 нелинейные с полимерной (пластмассовой) и ОПН-0,66 с фарфоровой изоляцией предназначены для защиты от коммутационных и атмосферных перенапряжений изоляции электрооборудования подстанций и сетей на класс напряжения 0,66 кВ.

Ограничители перенапряжений устанавливаются в сетях переменного тока



частотой 50 Гц с глухо заземленной нейтралью и включаются параллельно защищаемому объекту.

ОПН-П-0,66 УХЛ1 могут устанавливаться в тех местах электроустановок, где ранее

предусматривалось применение разрядников РВН.

### Условия эксплуатации ОПН-П-0,66

ОПН-П-0,66 могут эксплуатироваться в условиях открытого воздуха или внутри помещений:

- при температуре окружающей среды: от минус 60 до плюс 50°C;
- высота установки над уровнем моря до 1000м;
- относительная влажность воздуха при температуре плюс 25°C до 100%;
- толщина корки льда до 20 мм;
- скорость ветра без гололеда не более 40 м/с;
- скорость ветра при гололеде не более 15 м/с.

#### Конструкция и работа ограничителей перенапряжений

Конструктивно ограничители ОПН-П-0,66 выполнены в виде единичного нелинейного резистора сжатого пружиной, заключенных в полимерный (пластмассовый) корпус.

#### Условное обозначение ОПН-П-0,66 УХЛ1

В структуре условного обозначения ОПН-П принято:

| 0    | - ограничитель;              |
|------|------------------------------|
| П    | - перенапряжения;            |
| Н    | - нелинейный;                |
| П    | - полимерная изоляция;       |
| 0,66 | - класс напряжения сети, кВ; |
| УХЛ  | - климатическое исполнение;  |
| 1    | - категория размещения;      |

### Технические характеристики ограничителей перенапряжения ОПН-П-0,66 УХЛ1

| Параметр ограничителя                                 | Единица<br>измерения | ОПН-<br>П-0,66<br>УХЛ1 |
|-------------------------------------------------------|----------------------|------------------------|
| Класс напряжения сети                                 | кВ                   | 0,66                   |
| Наибольшее рабочее напряжение (длительно действующее) | кВ                   | 0,8                    |
| Номинальный разрядный ток                             | кА                   | 2,5                    |
| Остающееся напряжение при импульсном токе 8/20        | кВ                   |                        |

| мкс                                                                           |     |      |
|-------------------------------------------------------------------------------|-----|------|
| • с амплитудой тока 250 А                                                     |     | 2,8  |
| • с амплитудой тока 2500 А                                                    |     | 3,2  |
| • с амплитудой тока 5000 А                                                    |     | 3,4  |
| Длина пути утечки в нешней изоляции                                           | СМ  | 8,0  |
| Расчётный ток коммутационного перенапряжения на волне 30/60 мкс               | Α   | 125  |
| Остающееся напряжение при расчётном токе коммутационного перенапряжения       | кВ  | 2,6  |
| Двадцатикратная токовая пропускная способность токовая пропускная способность |     |      |
| <ul> <li>при прямоугольной волне длительностью 2000<br/>мкс</li> </ul>        | А   | 125  |
| • при волне импульсного тока 8/20 мкс                                         | кА  | 3    |
| Группа вибропрочности виброустойчивости по ГОСТ 17516.1-90                    |     | M6   |
| Допустимое натяжение проводов, не менее                                       | Н   | 10   |
| Допустимый крутящий момент на выводе                                          | Нм  | 2,5  |
| Macca                                                                         | КГ  | 0,32 |
| Срок службы                                                                   | лет | 25   |





## Ограничители перенапряжения ОПН-3,3; ОПН-3,3 КС; ОПНп-3,3 для контактной сети железных дорог

ОПН 3,3 кВ постоянного тока предназначены для защиты контактной сети электрифицированных железных дорог постоянного тока от атмосферных перенапряжений.

### Структурное обозначение ограничителя перенапряжений ОПНп-3,3 КС УХЛ1

- О ограничитель
- П перенапряжений

- Н нелинейный
- п в полимерном корпусе (полимерной изоляции)
- 3,3 класс напряжения сети, кВ
- КС контактной сети железных дорог
- УХЛ климатическое исполнение по ГОСТ 15150-69
- 1 категория размещения по ГОСТ 15150-69

### Условия эксплуатации ограничителей ОПН-3,3 для ж/д

Ограничители перенапряжения ОПН-3,3 для ж/д могут эксплуатироваться в условиях открытого воздуха:

- При температуре окружающей среды от -60 до +50° С;
- Высота установки над уровнем моря до 1200 м;
- Относительная влажность воздуха при температуре +25° С до 100%;
- Толщина корки льда до 20 мм;
- Скорость ветра без гололеда не более 40 м/с;
- Скорость ветра при гололеде не более 15 м/с.

### Конструкция ограничителей перенапряжений ОПН-3,3 кВ для ж/д

Конструктивно ОПН для ж/д выполнены в виде блока последовательно соединенных оксидно-цинковых резисторов с высоко нелинейной вольтамперной характеристикой. Блок нелинейных резисторов размещен в полимерной или фарфоровой покрышке. Днище покрышки имеет взрывопредохраняющее устройство, которое при повреждениях внутри ограничителя исключает повышение давления до значений, вызывающих взрыв покрышки.

### Основные технические характеристики ОПНп-3,3 УХЛ1

| Наименование параметра                                                                                            |                                     | ОПНп-3,3 |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------|
| Класс напряжения сети, кВ                                                                                         |                                     | 3,3      |
| Наибольшее длительно допустимо<br>Инд, кВ <sub>действ.</sub>                                                      | е рабочее напряжение ограничителя   | 4,0      |
| Классификационное напряжение при активной составляющей переменного тока 1 мА (амплитудное значение), кВ, не менее |                                     | 7,1      |
| Расчетный ток коммутационных по                                                                                   | еренапряжений на волне 30/60 мкс, А | 450      |
| Остающееся напряжение, кВ, не более, при токе грозовых перенапряжений 8/20 мкс с                                  | 500 A                               | 13,5     |
|                                                                                                                   | 5000 A                              | 17,0     |

| амплитудой                                               | 10000 A                                                                      | 19,3  |
|----------------------------------------------------------|------------------------------------------------------------------------------|-------|
| Остающееся напряжение при р перенапряжений, кВ, не более | асчетном токе коммутационных                                                 | 13,1  |
| Пропускная способность<br>ограничителя                   | 20 импульсов тока прямоугольной формы длительностью 2000 мкс с амплитудой, А | 450   |
|                                                          | 20 импульсов тока на волне 8/20<br>мкс с амплитудой, А                       | 10000 |
|                                                          | 2 импульса тока на волне 16/40<br>мкс с амплитудой, кА                       | 100   |
| Удельная энергоемкость, кДж/                             | кВ <sub>действ.</sub>                                                        | 2,7   |
| Масса, кг, не более                                      |                                                                              | 1,3   |

### Основная номенклатура ОПН 3,3 кВ:

- ОПНК-П1-3,3 УХЛ1
- ОПН-П1-3,3КС
- O∏H-3,3-O1
- ОПН-3,3-01 (ж/д)

## ОПН-6-РВО УХЛ1 и ОПН-10-РВО УХЛ1 для замены разрядников РВО

Ограничители перенапряжений ОПН-6-РВО УХЛ1 и ОПН-10-РВО УХЛ1 нелинейные в полимерной изоляции на 6-10 кв предназначены для защиты от грозовых и коммутационных перенапряжений электрооборудования сетей с изолированной нейтралью переменного тока частоты 50 Гц классов напряжения 6 и 10 кВ. Ограничители используются для замены устаревшего оборудования - вентильных разрядников РВО.



### Пример расшифровки условного обозначения ограничителя ОПН-6-РВО УХЛ1:

О - ограничитель;

П - перенапряжений;

Н - нелинейный;

6 - класс напряжения сети, кВ;

РВО - исполнение – для замены вентильных разрядников РВО;

УХЛ - климатическое исполнение по ГОСТ 15150;

1 - категория размещения по ГОСТ 15150.

# Основные технические характеристики ограничителей перенапряжений ОПН-6-РВО УХЛ1 и ОПН-10-РВО УХЛ1

#### Таблица 1 - Основные характеристики ОПН

|                                                                                                                |                       | Тип ограничителя       |  |
|----------------------------------------------------------------------------------------------------------------|-----------------------|------------------------|--|
| Параметр                                                                                                       | ОПН-6-<br>РВО<br>УХЛ1 | ОПН-10-<br>РВО<br>УХЛ1 |  |
| Класс напряжения сети, кВ                                                                                      | 6                     | 10                     |  |
| Наибольшее длительно допустимое рабочее напряжение Uнр, кВ                                                     | 7,6                   | 12,7                   |  |
| Номинальный разрядный ток 8/20 мкс, кА                                                                         | 5                     | 5                      |  |
| Остающееся напряжение на ОПН при импульсе тока 30/60 мкс с амплитудой:                                         | 17,8                  | 29,5                   |  |
| - 125 А, кВ, не более                                                                                          | 18,6                  | 31,0                   |  |
| - 250 А, кВ, не более                                                                                          | 19,7                  | 32,8                   |  |
| - 500 А, кВ, не более                                                                                          |                       |                        |  |
| Остающееся напряжение на ОПН при импульсе тока 8/20 мкс с амплитудой:                                          | 23,3                  | 38,9                   |  |
| - 2500 А, кВ, не более                                                                                         | 25,2                  | 42,1                   |  |
| - 5000 A, кB, не более                                                                                         | 28,4                  | 47,5                   |  |
| - 10000 А, кВ, не более                                                                                        |                       |                        |  |
| Амплитуда тока пропускной способности, А                                                                       | 250                   | 250                    |  |
| Амплитуда импульса большого тока 4/10 мкс, кА                                                                  | 65                    | 65                     |  |
| Остающееся напряжение на ОПН при импульсе 1/4 мкс с амплитудой номинального разрядного тока, кВ, не более      | 25,7                  | 43,5                   |  |
| Удельная рассеиваемая энергия при воздействии прямоугольного импульса тока 2000 мкс с амплитудой 250 А, кДж/кВ | 1,9                   | 1,9                    |  |

### Таблица 2 - Длина пути утечки и значения испытательных напряжений ОПН 6-10 кВ

| Нормируемый параметр                                                                           | Норма ОПН             |                        |
|------------------------------------------------------------------------------------------------|-----------------------|------------------------|
|                                                                                                | ОПН-6-<br>РВО<br>УХЛ1 | ОПН-10-<br>РВО<br>УХЛ1 |
| Длина пути утечки в нешней изоляции, см/кВ, не менее                                           | 2                     | 2,5                    |
| Полный грозовой импульс по ГОСТ 1516.2 с амплитудой, кВ                                        | 60,0                  | 75,0                   |
| Одноминутное испытательное напряжение частоты 50 Гц в сухом состоянии и под дождем, кВ ДЕЙСТВ. | 20,0                  | 28,0                   |

Архангельск (8182)63-90-72 Астана (7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Брянск (4632)39-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81

Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Калининград (4012)72-03-81 Нижний Новгород (831)429-08-12 Калуга (4842)92-23-67 Новокузнецк (3843)20-46-81 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16

Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13

Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 <del>Я</del>рославль (4852)69-52-93